
ACPD
9, 10549–10574, 2009

Analytical treatment
of sublimation

K. Gierens and S. Bretl

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Atmos. Chem. Phys. Discuss., 9, 10549–10574, 2009
www.atmos-chem-phys-discuss.net/9/10549/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics
Discussions

This discussion paper is/has been under review for the journal Atmospheric Chemistry
and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Analytical treatment of ice sublimation
and test of sublimation parameterisations
in two-moment ice microphysics models
K. Gierens and S. Bretl

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre,
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Abstract

We derive an analytic solution to the spectral growth/sublimation equation for ice crys-
tals and apply it to idealised cases. The results are used to test parameterisations
of the ice sublimation process in two-moment bulk microphysics models. Although it
turns out that the relation between number loss fraction and mass loss fraction is not5

a function since it is not unique, it seems that a functional parameterisation is the best
that one can do in a bulk model. Testing a more realistic case with humidity oscillations
shows that artificial crystal loss can occur in simulations of mature cirrus clouds with
relative humidity fluctuating about ice saturation.

1 Introduction10

Cloud microphysical models that use a two-moment bulk scheme predict both the tem-
poral and spatial variations of the total number and total mass of the droplets and ice
crystals. However, some processes affect only either number or mass concentration
directly, while the other moment is affected only indirectly. This means we can for-
mulate the process rate for one moment, but must parameterise it for the other. One15

example is deposition. When ice crystals grow by vapour deposition, the ice mass
grows accordingly while the number of crystals is constant. This is the easy case. The
difficult case arises in subsaturated conditions. When ice crystals sublimate, the ice
mass decreases accordingly, while the decrease rate of crystal number cannot be for-
mulated in a straightforward way. The prognostic equations for ice number and mass20

concentration (for recent examples cf. Morrison and Grabowski, 2008; Spichtinger and
Gierens, 2009) contain deposition terms, DEP (for mass concentration) and NDEP (for
number concentration) in the nomenclature of Spichtinger and Gierens (2009).

The problem is now, that there is an equation for DEP, but not for NDEP. Harrington
et al. (1995) have performed a large series of simulations to find an appropriate pa-25

rameterization for NDEP. Spichtinger and Gierens (2009) roughly followed their results
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and used the following simple approximation to calculate NDEP:

fn = f
α
m,

where fm is the mass fraction sublimated in the current time step, fn is the desired
number fraction, and α is a constant parameter. Harrington et al. (1995) suggest a
range of 1≤α≤1.5 for this parameter, which is set to α=1.1 by Spichtinger and Gierens5

(2009). Morrison and Grabowski (2008) use α=1, i.e. fn=fm.
The constancy of α is certainly an oversimplification, since this would mean that

ice crystals in fall streaks sublimate in a similar way than ice crystals deep inside a
cloud where small humidity fluctuations around ice saturation might lead to crystal
loss. Hence, we deemed it worth to investigate this process in more detail and to test10

potential alternative parameterisations.
For this purpose we will use an analytic solution to the problem, proceeding from the

spectral growth equation, to be derived next in Sect. 2. From the analytical solution
we compute number and mass loss fractions (Sect. 3) and derive timescales (Sect. 4).
Alternative parameterisations will be tested in Sect. 5. A discussion and conclusions15

are presented in the final Sects. 6 and 7.

2 Time dependent crystal mass distribution

The spectral growth equation has the form of a continuity equation in mass space:
∂
∂t
f (m, t) = − ∂

∂m
(ṁf ). (1)

f(m,t) dm is the time dependent probability that an ice crystal selected randomly in20

a cloud has a mass between m and m+dm. (f(m,t) has to be distinguished carefully
from fractions fx which are marked by a lower index.) ṁ (=dm/dt) is the depositional
mass growth/sublimation rate of a single crystal of mass m. Koenig (1971) has shown
that ṁ can be parameterized as a function of m in the simple form:

ṁ = amb. (2)25
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Here, a and b depend on temperature and pressure, and a depends additionally
on the degree of ice supersaturation. For subsaturated cases, a<0. Spichtinger and
Gierens (2009, their Fig. 5) show that this approximation is very good over four or-
ders of magnitude in m. The mass variable in the equation has to be dimensionless.
Hence it will be understood in the following that m is the mass in units of 1 ng which is5

appropriate for ice crystals. However, we will generally use statements like m=10 ng
instead of simply saying m=10. A certain value of a thus means the sublimation rate of
a 1 ng ice crystal in ng/s (although the true unit of a is 1/s). In this paper we use crystal
masses and values of a that are typical in cirrus clouds under slightly subsaturated
conditions, i.e. the temperature is below −38◦C, the pressure below 300 hPa and the10

relative humidity with respect to ice is about 90%. Note that the exact values are not
important for the principle considerations that follow.

We introduce the following coordinate transformation:

x =
m1−b

1 − b
ẋ = a(= const).

That is, in the new coordinates the growth/sublimation rate is a simple constant. Let15

g(x) be the probability density function of x. Then the spectral growth equation obtains
the simple form:

∂
∂t
g(x, t) = −a

∂g
∂x
,

which is solved by a characteristic:

g(x, t) = g̃(x − at).20

g̃ can be any function in principle, but here we use probability density functions, of
course. It is obvious that the time development of g(x, t) is merely a shift of the function
as a whole along the x-axis. All central moments of order higher than one are invariant,
that is the shape of g(x,t) does not change over time. A proof of this statement is given
in Appendix A.25
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We start (t=0) from a certain initial mass distribution (e.g., log-normal), normalized
to one for the present paper:

f (m,0)dm =
1

√
2π lnσm

exp

−1
2

[ln( mm0
)]2

(lnσm)2

 1
m
dm,

substitute m with x (this yields another log-normal with x0=m
1−b
0 /(1 − b) and

lnσx=lnσ1−b
m ):5

g(x,0)dx =
1

√
2π lnσx

exp

−1
2

[ln( xx0
)]2

(lnσx)2

 1
x
dx,

and then replace x with x−at, which represents the temporal evolution of the mass
distribution in the x-coordinates:

g(x, t)dx =
1

√
2π lnσx

exp

−1
2

[ln(x−atx0
)]2

(lnσx)2

 1
x − at dx.

Finally, we have to substitute back x with m1−b/(1 − b), to get the desired result:10

f (m, t)dm =
1

√
2π lnσm

exp

−1
2

[
ln m1−b−(1−b)at

m1−b
0

]2

(1 − b)2(lnσm)2

 × 1

m − (1 − b)atmb
dm (3)

Singularities of this formulation can appear at negative m which are irrelevant. The
singularity developing at m=0 is integrable. The temporal evolution of the initially log-
normal distribution is shown in Fig. 1 for a sublimation condition (a<0). It is evident that
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in the mass coordinates the distribution does not retain its initial shape; deviations from
the initial shape are very pronounced. When we consider instead a growth situation
(a>0) the initial shape is much better conserved (not shown). A more general solution
of the spectral growth equation is presented in Appendix B.

3 Mass loss and number loss fractions5

We assume that ice crystals have a minimum mass of mthr (e.g. 10−3 ng). Then we de-
fine for k∈{0,1} the following integrals which give the total number and mass fractions
of the ice mass distribution exceeding the threshold:

Ik(t) :=

∞∫
mthr

mkf (m, t)dm.

Since f depends on time, so does Ik . Harrington et al. (1995) consider the total mass10

loss (φ1) and number loss (φ0) at time t which can be written as

φk(t) =
Ik(0) − Ik(t)

Ik(0)
.

These functions are plotted together in Fig. 2. Time runs along the curves from (0,0)
to (1,1). We see that initially the mass loss dominates while the number loss domi-
nates in the later phases of the ongoing sublimation process. This is what we expect15

for mass distributions with mode masses exceeding the threshold mass. Different be-
haviour can be expected for exponential (i.e. Marshall-Palmer) distributions. We note
that Harrington et al. (1995) also had examples with a different behaviour.

In a cloud model, we generally do neither have knowledge of the initial values Ik(0)
nor of the time t which must be interpreted here as the time passed by since subli-20

mation started. (Since many processes act in a cloud model simultaneously it would
not even make sense to introduce such a time variable or to track the “initial” values).
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Hence, in a model we usually can only consider the fractional mass and number loss
per time step, which can be written as

fk(t,∆t) =
Ik(t) − Ik(t + ∆t)

Ik(t)
.

These fractions depend on the time step ∆t, but still on the time since sublimation
started. Examples for various time steps are plotted in Fig. 3. The curves fn(fm) all5

have similar shape. They start near the x-axis which means that mass loss dominates
initially, and after about 600 s they reach an “attractor” that can be approximately be
fitted by fn=f

α̃
m with α̃=0.89. α̃<1 again signifies that later in the sublimation process the

number loss dominates. The shape of the curves shows that fn is not really a function
(in the mathematical sense) of fm because it is not unique even if the timestep is fixed.10

This makes it questionable whether a functional dependence for parameterisation of
sublimation should be used in models that do not explicitely resolve the mass (or size)
distribution, so-called bulk models.

The timestep dependence of fk calls for a Taylor expansion which yields

fk(t,∆t) = −f ′k∆t + O(∆t2).15

As Fig. 3 shows, the higher orders cannot be neglected at time steps of the order
100 s and longer. Hence the following analysis is strictly valid only for cloud resolving
models with small time steps of the order seconds (where the higher order terms are
negligible), but it might still give some guidance for the treatment of sublimation in
large-scale models.20

First, we have

f ′k(t) =
1
Ik(t)

dIk
dt
,

which still retains the time dependence. We note that 1/f ′k(t) can be interpreted as a
timescale for the change of the corresponding integral. The derivatives of the integrals
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can be computed in the following way:

dIk
dt

=

∞∫
mthr

mk · ∂f
∂t
dm,

and the partial derivative of the mass distribution function is:

∂f
∂t

= f ×


ln
(
m1−b−(1−b)at

m1−b
0

)
a

(1 − b)(lnσm)2[m1−b − (1 − b)at]
+

(1 − b)amb

m − (1 − b)atmb

 .

f ′n vs. f ′m is plotted in Fig. 4. These curves look similar to those in Fig. 3, and indeed5

they are equivalent to those for a unit time step of 1 s.

4 Time scales

The curves φn(φm) in Fig. 2 look very similar for different initial mean masses, but if
we would include tick marks for time along the curves they would differ for different
curves. We can therefore try to unify these functions with respect to time as well by10

introducing a dimensionless time τ. For this we can first compute the time T it needs
to sublimate completely (i.e. to mass zero) a crystal having exactly the mass m0, the
geometric mean mass of the distribution. This time is

T =
m1−b

0

|a|(1 − b)
.

With this time we introduce τ as t/T , i.e.15

τ = t|a|(1 − b)m(b−1)
0 .
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Hence, the dimensionless time variable takes into account the initial geometric mean
mass of the mass distribution and the current sublimation rate. It takes not into account
other quantities like the width of the mass distribution. We define

h(τ) =
f ′n(a,m0, t)

f ′m(a,m0, t)
.

h(τ) can be interpreted as the ratio of two timescales for change of the Ik integrals.5

These timescales and their ratio vary in time. h(τ) is plotted in Fig. 5 for various initial
geometric mean masses (from 1 to 1000 ng) and various sublimation rates. Obviously,
all these functions are very similar and they can be fitted with a generalized log-logistic
function:

h̃(τ) =
ψ

1 +
(
p+1
p−1

)(
τ0
τ

)p .10

The formulation is such that τ0 is the inflexion point of the fit function. The latter is
plotted in Fig. 5 as well with ψ=1.24, p=2.4, τ0=0.3. ψ is the asymptotic value of the
fit for large values of τ. It exceeds unity which is an expression for our earlier finding
that in the end the number loss exceeds the mass loss rate. The parameter p controls
the steepness of the fit around the inflexion point, i.e. it measures how fast sublimation15

changes from the mass loss to the number loss regime. Finally, the inflexion point is
found here at 0.3 which means that the transition into the number loss regime occurs
at a considerably shorter time than is needed to sublimate a crystal with the median
mass (which equals the geometric mean in case of a log-normal mass distribution).

We see that it is possible to find a certain universal behaviour of the sublimation20

curves that do not depend on initial mean mass or sublimation rate. The function does
however change when we use different initial mass distributions, e.g. by changing to a
different σm (not shown). The main problem is still that the value of h depends on the
time since sublimation started. As we do not have this information in cloud models we
cannot know easily whether the process is still on the lower branch or already on the25

upper branch or close to the inflexion point.
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It is clear that the time corresponding to τ0 or τ=1 is a characteristic time of the
sublimation process. It might be useful to know it for practical applications that we
consider next. For the parameters used in Fig. 5 the time scales range from 40 to 250 s,
that is, time steps of cloud resolving models are mostly smaller than the characteristic
times, while those of climate models are often larger.5

5 Tests of parameterisations in two-moment models

There are two principle possibilities to parameterise sublimation in two-moment mod-
els, either one defines fn as a direct function of fm or one formulates fn independently
of fm. The second approach is a bit risky, since it does not guarantee that fn=(0,1) for
fm=(0,1), so that a mixed approach that gives this guarantee would perhaps be prefer-10

able. When fn is a direct function of fm, the power law fn=f
α
m is the simplest formulation

that fulfills fn=(0,1) for fm=(0,1).

5.1 Power laws

We can test a parameterisation by simulating complete sublimation (with constant a)
and comparing the total mass and number loss fractions φk with the corresponding15

functions resulting from the analytical solution. A first example showing a test of fn=f
α
m

with α=1.1 (Spichtinger and Gierens, 2009) is given in Fig. 6. We see that the param-
eterisation produces too high number loss fractions in the early phases of sublimation
while in the final phase the mass loss fractions are overestimated relative to the num-
ber loss. Obviously, a choice of α<1 would deteriorate the situation, and a much larger20

value of α would only improve the agreement for the initial phase of sublimation at the
price of much worse results in the later phases.

One could try to use a large α in the initial phase and α<1 later. The problem is,
however, that one cannot decide in the cloud model in which phase the sublimation
process is. From the analytical results one can see that the crystal mean mass de-25
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creases first and then (when the curves in Fig. 3 reach the “attractor”) increases again.
One would like to exploit this fact in the cloud model, but unfortunately the mean mass
decreases continuously in the parameterisation which is a direct consequence of the
formulation fn=f

α
m with α>1. That means, once we have α>1 for the inital phase, we

will never get to a point when the mean mass starts to increase, hence the criterion for5

switching to α<1 will never be met.

5.2 Other functions

We tested other functional relations between fn and fm as well, in particular such that

give a zero derivative at fm=0 (not shown). Examples are fn=1−
√

1−f αm with α>1 and

fn=[cos((fm − 1)π)+1]/2. This did not yield real improvements over the simple power10

law. In these cases, φn≈0 until most of the ice mass is sublimated (unless α is very
close to one).

5.3 Using maximum sublimating crystal mass

Alternatively one can compute in the cloud model the maximum crystal massmmax that
sublimates within a timestep. Assuming the Koenig approximation this is given as15

mmax = (|a|∆t)1/(1−b).

With this quantity at hand we can compute

fn =

∫mmax

0 f (m)dm∫∞
0 f (m)dm

,

while fm is computed by the model in the usual way. For the calculation of the denomi-
nator integral we use expressions for truncated moments (Jawitz, 2004):20 ∫ mmax

0
f (m)dm =

1
2

erf

[
ln(mmax/m0)

lnσm
√

2

]
+

1
2
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It turns out that this method produces bad results for too large and too small time steps.
For too large time steps (even 1 s turned out too large for m0=1 ng and a=−0.04 ng/s)
fn is non-zero at the beginning, and for too short time steps (0.1 s) we have again the
problem that φn≈0 until most of the ice mass is sublimated.

5.4 Using moments5

Another possibility one could think about is to formulate fn in a cloud model via the
moments of the mass distribution. These are defined as

µk =
∫ ∞

0
mkf (m)dm.

Spichtinger and Gierens (2009) use dqc/dt=aµb (corrections neglected) from which
fm is computed. In analogy, we may set dN/dt=aµb−1 and compute fn from it. (Al-10

though µb−1 is a moment of negative order, it works since the corresponding integral
is finite). Although this sounds a logical approach, it is not. In this case we have
f ′m=−aµb/µ1 and f ′n=−aµb−1/µ0, which shows that h(τ) turns out as a constant. This
is not only in contradiction to the analytical behaviour of h(τ) (Fig. 5), but – even worse
– it also implies fn∝fm which violates the boundary conditions at 0 and 1, unless the15

proportionality constant is one, which it is generally not since it depends on b (pressure
and temperature dependent) and σm.

5.5 Effect of humidity fluctuations around ice saturation

Finally we test the effect of small-scale humidity fluctuations around ice saturation
(caused by random fluctuations or atmospheric waves) on sublimation. Such a situa-20

tion can arise in old contrails or cirrus clouds (where relative humidity had enough time
to equilibrate with the ice crystal ensemble) under certain synoptic conditions, namely
when the large-scale vertical wind is very weak (less than a few cm s−1). Since a is
a non-explicit function of time in such a case, the analytical solution is no longer valid
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and also the more general solution of Appendix B is not applicable. Hence we choose
a simple numerical procedure. We divide the lognormal mass distribution in 1000 dis-
crete initial masses, compute the mass growth/sublimation rates for each mass with 1 s
timesteps. Once a mass gets smaller than a threshold of 0.001 ng, it is assumed to be
lost. The fluctuations are represented with a sinusoidal oscillation. The sublimated ice5

is assumed to add to the water vapour, i.e. to increase the relative humidity, such that
the total initial ice mass equals the amplitude of the oscillation:

RHi = 100 − 5 sin(2πωt) + 5φm(%).

Note that φm can become negative in the growth phases. We use a geometric mean
mass of 100 ng. At RHi=95% (220 K, 250 hPa) we get a=−9.1×10−4 ng/s, the charac-10

teristic time (i.e. τ=1) is 5800 s. The oscillation frequency chosen was ω=1/250 s−1,
which is a typical value for a Brunt-Väisälä oscillation in stably stratified air. A first test
of the numerical method with constant subsaturation gave φn(φm) as in Fig. 2 which
shows that the numerical procedure works well. When we switch on the oscillation and
add the sublimated ice to the relative humidity both mass and number loss are reduced15

strongly; after 30 000 s simulation time only a few percent of the mass and less than
one per mille of the number are lost. With a lower frequency of ω=1/2500 s−1 (grav-
ity wave) these numbers are larger, because the initial sublimation period lasts much
longer, but still less than 10 percent of the number is lost after 30 000 s. The results
can be explained as follows: initially the mean relative humidity is ice saturation, but20

the sublimating ice adds to this mean, such that quickly a new mean value is achieved
that exceeds saturation. Hence, in spite of the oscillations that always lead transiently
through subsaturated states, on the average the sublimation process is halted. After
the first sublimation period all crystals that were small enough for sublimation are lost,
but in the following sublimation phases the remaining crystals are large enough to sur-25

vive. Unfortunately, a different behaviour is displayed by a model employing the simple
parameterisation fn=f

α
m. Here, more than 20% of the ice is lost within 30 000 s and with

ω=1/250 s−1, while the ice mass stays approximatly constant. This is obvioulsy the
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effect of adjusting the mass distribution after each time step to a new log-normal dis-
tribution (with changed geometric mean mass). Hence although the small crystals are
gone within the first sublimation phase, there are new small crystals in the next, merely
because the fixed distribution type enforces this. This leads to crystal loss in every
new sublimation phase. This means that under conditions of a cloud in equilibrium (i.e.5

RHi≈100%) small scale fluctuations in the cloud model can lead to an artificial crystal
loss with corresponding consequences on further microphysical evolution and optical
properties.

6 Discussion

Having performed the simple tests of the various possible parameterisations we see10

now clearer the difficulties inherent in modelling ice sublimation in the framework of
two-moment models. These difficulties arise in the same way when another mass dis-
tribution is chosen (we have also tested a generalised gamma distribution). A Marshall-
Palmer distribution which is typical for cloud droplets could give different test results;
this has not been tested in this paper because we are mainly interested in improvement15

of cirrus and contrail models. But such tests could be done in an analogous manner.
As a general rule of thumb the analytical solutions showed that over a large fraction of

the sublimation phase the number loss fraction equals roughly the mass loss fraction,
as seen for instance in Figs. 2 and 3. In particular for large-scale models with long
timesteps of the order of the sublimation timescale it seems therefore reasonable to20

set fn=fm. For cloud resolving models which need timesteps much shorter than the
sublimation timescale problems can arise, in particular in the beginning of the process,
when the number concentration is hardly affected although the mass concentration
is already diminishing. Hence it is not easy to find a better parameterisation for a
small-scale model. The simple parameterisation fn=f

α
m with α&1 seems to obey the25

simple rule, but in the oscillation case it went wrong although the more exact simulation
showed that the rule is valid in this case as well.
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Unfortunately, the oscillation case is not so academic like the other tests we have
performed; we even took into account that the sublimating ice mass contributes to the
vapour phase and thus to the relative humidity in the cloud. The oscillation case is
typical for mature clouds where crystals have consumed the excess vapour completely
and where random fluctuations (turbulence) and atmospheric waves of various kind5

affect the cloud evolution. In order to avoid artificial number concentration loss in such
quasi-equilibrium cases one could either employ a larger value of α, such that larger
mass loss is needed before crystal loss commences. Or one could introduce a sub-
limation humidity threshold of several percent below saturation. Both strategies have
their disadvantages. A sublimation threshold several percent below 100% is unphysical10

and may have unforeseeable effects. Larger α underestimates crystal loss in situations
of steady substantial sublimation (as do other functional relations, as we have seen);
however, one can let α depend on the degree of subsaturation, with larger values at
small and smaller values at larger saturation deficits. This has been tested as well and
it produces better results than the parameterisation with constant α.15

The solution of the spectral growth equation does not give a temporally varying σm.
Hence the constancy of σm in a cloud model is consistent with the analytical solution.
This does not mean, however, that the width of the mass distribution is constant, nei-
ther in the analytical solution nor in the model. One could therefore think of using the
distribution width (standard deviation) as an independent piece of information for the20

parameterisation of sublimation. But this is only possible in the model when the sec-
ond moment of the distribution is a prognostic variable, that is, if one proceeds to a
three-moment model. In a two-moment model the standard deviation does not evolve
independently of the mean mass (in the model of Spichtinger and Gierens (2009) they
are proportional to each other). Independent evolution of the standard deviation needs25

either to violate the constancy of σm (when one stays within the two-moment approach)
or to introduce a more sophisticated model that takes into account the time variation
of the mass distribution shape. Although there are models that predict the temporal
evolution of the second moment (e.g. Tompkins, 2002), it is not possible to derive a
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prognostic equation for it from first principles. Hence the relation of µ2 to the various
microphysical process rates is at least as loose as that of the zeroth moment to the
sublimation rate.

The question arises whether there are other pieces of information available at
timestep level in the two-moment model. We have: two independent moments, namely5

number and mass concentrations, and direct functions of them (all other moments,
effective sizes, and so on). More information can only be provided by the thermo-
dynamic state at the timestep, i.e. the relative humidity and the temperature. These
quantities allow to additionally compute the maximum mass that can evaporate within
one timestep. However, we have seen that even with this additional information it is10

difficult to construct a better parameterisation of sublimation; at least our approach in
the previous section was not successful although it sounded plausible.

Our analytical tests were admittedly a bit academic. The analytical solution is only
valid for constant a, which would mean that sublimated ice would disappear from the
system. In reality, the sublimating ice increases the vapour concentration which gener-15

ally will lead to increasing a. Also the sublimation process was considered in isolation,
which is reasonable for testing, but in reality other processes act simultaneously. The
sublimation timescales can be very long especially when the subsaturation is low. In
such a case, however, there may well be other processes with shorter timescales that
then dominate the cloud evolution rendering the problems with sublimation less im-20

portant. When subsaturations are larger or the mean mass smaller, sublimation time
scales get shorter; then the sublimation process will quickly evolve into that regime
where fn≈fm, such that the problems with the initial phases lasts for a shorter period
of time. Here it would turn out disadvantagous to have a larger α or one of the other
approaches discussed in the previous section, because they lead to underestimation25

of the number loss over a large fraction of the whole sublimation process.
Considering these arguments we think that, in spite of its weaknesses, the simple

approach fn=f
α
m with α slightly exceeding unity or dependent on the degree of subsat-

uration (or unity for large-scale models) is still one of the best choices one can make.
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7 Conclusions

The analytic solution of the spectral growth equation and its application to ice sublima-
tion gave the following insights:

– The relation between fractional number loss and fractional mass loss is non-
unique, that is, it is no function. However it seems advantageous to formulate5

it as a function in parameterisations of ice microphysics for both large-scale and
small-scale models.

– sublimation timescales are usually longer than timesteps of cloud resolving mod-
els, and often but not generally shorter than timesteps of large-scale models. The
latter case is easier to parameterise than the first one.10

– As a rule of thumb the analytical solutions showed that over most of the sublima-
tion process the number loss rate equals approximatly the mass loss rate. It is
therefore a good idea to set them equal in large-scale models with long timesteps
(say, 15 min and more).

– For small-scale models (e.g. cloud-resolving and large-eddy models) we have15

tested a number of alternatives to the standard power law, but the power law
turned out to produce the best results compared to the analytical solution.

– Care has to be taken with the power law formulation when a cirrus cloud or con-
densation trail at ice saturation undergoes small-scale humidity fluctuations (prob-
ably irrelevant for large-scale models). Without any counter-measure the power20

law with α close to one leads to severe overestimation of crystal loss. It might be
better to let α be a function of saturation deficit with larger values at low deficit
and values closer to one at larger subsaturations.

The academic test cases of the present paper can only give insight about the prob-
lems inherent in parameterisations of ice sublimation. The success of an alternative25

10565

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/10549/2009/acpd-9-10549-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/10549/2009/acpd-9-10549-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 10549–10574, 2009

Analytical treatment
of sublimation

K. Gierens and S. Bretl

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

parameterisation in “every day work” should, however, be checked against spectrally
resolving microphysics models where sublimation acts in combination and in competi-
tion with all other processes.

Appendix A Proof of shape invariance of g(x,t)

We proof that g(x,t) is shape invariant, that is, only the first moment is a function of5

time, but all higher central moments are time-invariant. Instead of g(x,t) we use the
characteristic solution g̃(x−at) for the proof. Note that g(x, t)=g̃(x−at) is zero for x<at.
Hence the first moment is

µ1(t) =
∫ ∞

at
×g̃(x − at)dx.

Substitution y=x−at gives10

µ1(t) =
∫ ∞

0
(y + at)g̃(y)dy = µ1(0) + at,

since g̃(y) is normalized to unity. The central moments of order k are defined as

µ̃k(t) =
∫ ∞

at
[x − µ1(t)]k g̃(x − at)dx.

Again substituting as before and inserting the expression for the first moment gives:

µ̃k(t) =
∫ ∞

0
[y + µ1(0)]k g̃(y)dy,15

which is independent of time and which proofs our assertion.
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Appendix B Solution of the spectral growth equation

A more general analytic solution of the spectral growth equation that handles for in-
stances cases with time dependent a(t) (but with constant b) is possible proceeding
from the following point of view. Let

dm
dt

= a(t)mb,5

then the solution of this nonlinear differential equation is

m(t)1−b −m(0)1−b = A(t)

with

A(t) =
∫ t
0
a(t′)dt′

being the antiderivative of a(t) (for constant a, A=at as in the main part of the paper).10

Now take the following viewpoint: let m(0) be a random variable with a given probabil-
ity distribution f0[m(0)], e.g. the log-normal. Then the solution above effects a mapping
from the random variable m(0) to the random variable m(t), that is unique (and invert-
ible) over a certain interval in time, [0, T ], depending on the time dependence of a.
Over this intervall it is possible to compute the probability distribution of m(t), ft[m(t)],15

using the substitution rule, i.e.

ft[m(t)] = f0{m(0)[m(t)]}
∣∣∣∣dm(0)

dm(t)

∣∣∣∣
and the derivative is

dm(0)

dm(t)
=
(

1 −
A(t)

m(t)1−b

) b
1−b
.

ft[m(t)] is the desired solution of the spectral growth equation. For the special case20

b=−1 (radius growth equation for liquid droplets) formally identical solutions have been
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obtained using another method (seemingly going back to Sedunov, 1974) by Wacker
and Herbert (1983) and Brenguier (1991, Eq. 2.5).

Acknowledgements. We are grateful to Johannes Hendricks for critically reading a preliminary
version of the manuscript and to Peter Spichtinger for providing a piece of software that we
could use for the numerical exercise. The results of the work contribute to the development of5

two-moment ice physics schemes in the framework of the DLR project CATS.
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2 K. Gierens and S. Bretl: Analytical treatment of sublimation

f(m, t) dm is the time dependent probability that an ice
crystal selected randomly in a cloud has a mass between m
and m + dm. (f(m, t) has to be distinguished carefully
from fractions fx which are marked by a lower index.) ṁ
(= dm/dt) is the depositional mass growth/sublimation rate
of a single crystal of mass m. Koenig (1971) has shown that
ṁ can be parameterized as a function of m in the simple
form:

ṁ = amb. (2)

Here, a and b depend on temperature and pressure, and
a depends additionally on the degree of ice supersaturation.
For subsaturated cases, a < 0. Spichtinger and Gierens
(2009, their figure 5) show that this approximation is very
good over four orders of magnitude in m. The mass vari-
able in the equation has to be dimensionless. Hence it will
be understood in the following that m is the mass in units of
1 ng which is appropriate for ice crystals. However, we will
generally use statements like m = 10 ng instead of simply
sayingm = 10. A certain value of a thus means the sublima-
tion rate of a 1 ng ice crystal in ng/s (although the true unit
of a is 1/s). In this paper we use crystal masses and values of
a that are typical in cirrus clouds under slightly subsaturated
conditions, i.e. the temperature is below −38 ◦C, the pres-
sure below 300 hPa and the relative humidity with respect to
ice is about 90%. Note that the exact values are not important
for the principle considerations that follow.

We introduce the following coordinate transformation:

x =
m1−b

1− b ẋ = a (= const).

That is, in the new coordinates the growth/sublimation rate is
a simple constant. Let g(x) be the probability density func-
tion of x. Then the spectral growth equation obtains the sim-
ple form:

∂

∂t
g(x, t) = −a∂g

∂x
,

which is solved by a characteristic:

g(x, t) = g̃(x− at).

g̃ can be any function in principle, but here we use probabil-
ity density functions, of course. It is obvious that the time
development of g(x, t) is merely a shift of the function as a
whole along the x–axis. All central moments of order higher
than one are invariant, that is the shape of g(x, t) does not
change over time. A proof of this statement is given in Ap-
pendix A.

We start (t = 0) from a certain initial mass distribution
(e.g., log-normal), normalized to one for the present paper:

f(m, 0) dm =
1√

2π lnσm
exp

{
−1

2
[ln( mm0

)]2

(lnσm)2

}
1
m
dm,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.001 0.01 0.1 1 10

f(
m

,t)

Crystal mass (ng)

Fig. 1. f(m, t) for various times t under sublimation with a =
−0.004 ng/s. t = 0 (solid red, the initial log–normal distribution),
and t = 10, 30, 60, 120 s (solid green and blue, dashed red and
blue).

substitute m with x (this yields another log-normal with
x0 = m1−b

0 /(1− b) and lnσx = lnσ1−b
m ):

g(x, 0) dx =
1√

2π lnσx
exp

{
−1

2
[ln( xx0

)]2

(lnσx)2

}
1
x
dx,

and then replace xwith x−at, which represents the temporal
evolution of the mass distribution in the x–coordinates:

g(x, t) dx =
1√

2π lnσx
exp

{
−1

2
[ln(x−atx0

)]2

(lnσx)2

}
1

x− at dx.

Finally, we have to substitute back x with m1−b/(1 − b), to
get the desired result:

f(m, t) dm =
1√

2π lnσm
exp




−1

2

[
ln m1−b−(1−b)at

m1−b
0

]2

(1− b)2(lnσm)2





× 1
m− (1− b)atmb

dm (3)

Singularities of this formulation can appear at negative m
which are irrelevant. The singularity developing at m = 0
is integrable. The temporal evolution of the initially log–
normal distribution is shown in Fig. 1 for a sublimation con-
dition (a < 0). It is evident that in the mass coordinates the
distribution does not retain its initial shape; deviations from
the initial shape are very pronounced. When we consider in-
stead a growth situation (a > 0) the initial shape is much
better conserved (not shown). A more general solution of the
spectral growth equation is presented in Appendix B.

Fig. 1. f(m,t) for various times t under sublimation with a=−0.004 ng/s. t=0 (solid red, the initial
log-normal distribution), and t=10,30,60,120 s (solid green and blue, dashed red and blue).
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0
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Fig. 2. φn vs. φm for various initial geometric mean masses. Time
runs along the curves from (0, 0) to (1, 1).

3 Mass loss and number loss fractions

We assume that ice crystals have a minimum mass of mthr

(e.g. 10−3 ng). Then we define for k ∈ {0, 1} the following
integrals which give the total number and mass fractions of
the ice mass distribution exceeding the threshold:

Ik(t) :=

∞∫

mthr

mkf(m, t)dm.

Since f depends on time, so does Ik. Harrington et al. (1995)
consider the total mass loss (φ1) and number loss (φ0) at time
t which can be written as

φk(t) =
Ik(0)− Ik(t)

Ik(0)
.

These functions are plotted together in Fig. 2. Time runs
along the curves from (0, 0) to (1, 1). We see that initially
the mass loss dominates while the number loss dominates in
the later phases of the ongoing sublimation process. This
is what we expect for mass distributions with mode masses
exceeding the threshold mass. Different behaviour can be ex-
pected for exponential (i.e. Marshall–Palmer) distributions.
We note that Harrington et al. (1995) also had examples with
a different behaviour.

In a cloud model, we generally do neither have knowledge
of the initial values Ik(0) nor of the time t which must be in-
terpreted here as the time passed by since sublimation started.
(Since many processes act in a cloud model simultaneously it
would not even make sense to introduce such a time variable

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f n

fm

Fig. 3. Mass loss (fm) and number loss (fn) fractions due to the
sublimation per time step. Time steps are 100, 200, 300, 400 s (solid
red, green, blue, dashed red), and time runs along each curve from
bottom right to top left. The individual time steps are marked on
each curve. The yellow point at (1, 1) was the result of a test with
a very long time step that should guarantee that the ice sublimates
completely within that step. The black line is the attempt of a fit
of the later parts of the curves, f(x)=x0.89. The initial geometric
mean mass for the calculations is m0=1 ng.

or to track the “initial” values). Hence, in a model we usu-
ally can only consider the fractional mass and number loss
per time step, which can be written as

fk(t,∆t) =
Ik(t)− Ik(t+ ∆t)

Ik(t)
.

These fractions depend on the time step ∆t, but still on the
time since sublimation started. Examples for various time
steps are plotted in fig. 3. The curves fn(fm) all have similar
shape. They start near the x–axis which means that mass loss
dominates initially, and after about 600 s they reach an “at-
tractor” that can be approximately be fitted by fn = f α̃m with
α̃ = 0.89. α̃ < 1 again signifies that later in the sublimation
process the number loss dominates. The shape of the curves
shows that fn is not really a function (in the mathematical
sense) of fm because it is not unique even if the timestep is
fixed. This makes it questionable whether a functional de-
pendence for parameterisation of sublimation should be used
in models that do not explicitely resolve the mass (or size)
distribution, so–called bulk models.

The timestep dependence of fk calls for a Taylor expan-
sion which yields

fk(t,∆t) = −f ′k∆t+O(∆t2).

Fig. 2. φn vs. φm for various initial geometric mean masses. Time runs along the curves from
(0,0) to (1,1).
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Fig. 2. φn vs. φm for various initial geometric mean masses. Time
runs along the curves from (0, 0) to (1, 1).

3 Mass loss and number loss fractions

We assume that ice crystals have a minimum mass of mthr

(e.g. 10−3 ng). Then we define for k ∈ {0, 1} the following
integrals which give the total number and mass fractions of
the ice mass distribution exceeding the threshold:

Ik(t) :=

∞∫

mthr

mkf(m, t)dm.

Since f depends on time, so does Ik. Harrington et al. (1995)
consider the total mass loss (φ1) and number loss (φ0) at time
t which can be written as

φk(t) =
Ik(0)− Ik(t)

Ik(0)
.

These functions are plotted together in Fig. 2. Time runs
along the curves from (0, 0) to (1, 1). We see that initially
the mass loss dominates while the number loss dominates in
the later phases of the ongoing sublimation process. This
is what we expect for mass distributions with mode masses
exceeding the threshold mass. Different behaviour can be ex-
pected for exponential (i.e. Marshall–Palmer) distributions.
We note that Harrington et al. (1995) also had examples with
a different behaviour.

In a cloud model, we generally do neither have knowledge
of the initial values Ik(0) nor of the time t which must be in-
terpreted here as the time passed by since sublimation started.
(Since many processes act in a cloud model simultaneously it
would not even make sense to introduce such a time variable
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0 0.2 0.4 0.6 0.8 1
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Fig. 3. Mass loss (fm) and number loss (fn) fractions due to the
sublimation per time step. Time steps are 100, 200, 300, 400 s (solid
red, green, blue, dashed red), and time runs along each curve from
bottom right to top left. The individual time steps are marked on
each curve. The yellow point at (1, 1) was the result of a test with
a very long time step that should guarantee that the ice sublimates
completely within that step. The black line is the attempt of a fit
of the later parts of the curves, f(x)=x0.89. The initial geometric
mean mass for the calculations is m0=1 ng.

or to track the “initial” values). Hence, in a model we usu-
ally can only consider the fractional mass and number loss
per time step, which can be written as

fk(t,∆t) =
Ik(t)− Ik(t+ ∆t)

Ik(t)
.

These fractions depend on the time step ∆t, but still on the
time since sublimation started. Examples for various time
steps are plotted in fig. 3. The curves fn(fm) all have similar
shape. They start near the x–axis which means that mass loss
dominates initially, and after about 600 s they reach an “at-
tractor” that can be approximately be fitted by fn = f α̃m with
α̃ = 0.89. α̃ < 1 again signifies that later in the sublimation
process the number loss dominates. The shape of the curves
shows that fn is not really a function (in the mathematical
sense) of fm because it is not unique even if the timestep is
fixed. This makes it questionable whether a functional de-
pendence for parameterisation of sublimation should be used
in models that do not explicitely resolve the mass (or size)
distribution, so–called bulk models.

The timestep dependence of fk calls for a Taylor expan-
sion which yields

fk(t,∆t) = −f ′k∆t+O(∆t2).

Fig. 3. Mass loss (fm) and number loss (fn) fractions due to the sublimation per time step. Time
steps are 100, 200, 300, 400 s (solid red, green, blue, dashed red), and time runs along each
curve from bottom right to top left. The individual time steps are marked on each curve. The
yellow point at (1,1) was the result of a test with a very long time step that should guarantee
that the ice sublimates completely within that step. The black line is the attempt of a fit of the
later parts of the curves, f (x)=x0.89. The initial geometric mean mass for the calculations is
m0=1 ng.
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Fig. 4. f ′n vs. f ′m for various initial geometric mean masses from 1
to 1000 ng (dashed red, solid green, blue, red). Note that the inverse
values of the axis correspond to the timescales for the change of the
corresponding integrals Ik(t) in seconds.

As fig. 3 shows, the higher orders cannot be neglected at time
steps of the order 100 s and longer. Hence the following
analysis is strictly valid only for cloud resolving models with
small time steps of the order seconds (where the higher order
terms are negligible), but it might still give some guidance
for the treatment of sublimation in large–scale models.

First, we have

f ′k(t) =
1

Ik(t)
dIk
dt
,

which still retains the time dependence. We note that 1/f ′k(t)
can be interpreted as a timescale for the change of the cor-
responding integral. The derivatives of the integrals can be
computed in the following way:

dIk
dt

=

∞∫

mthr

mk · ∂f
∂t
dm,

and the partial derivative of the mass distribution function is:

∂f

∂t
= f ×





ln
(
m1−b−(1−b)at

m1−b
0

)
a

(1− b)(lnσm)2[m1−b − (1− b)at] +
(1− b)amb

m− (1− b)atmb



 .

f ′n vs. f ′m is plotted in fig. 4. These curves look similar to
those in fig. 3, and indeed they are equivalent to those for a
unit time step of 1 s.

4 Time scales

The curves φn(φm) in fig. 2 look very similar for different
initial mean masses, but if we would include tick marks for

time along the curves they would differ for different curves.
We can therefore try to unify these functions with respect
to time as well by introducing a dimensionless time τ . For
this we can first compute the time T it needs to sublimate
completely (i.e. to mass zero) a crystal having exactly the
mass m0, the geometric mean mass of the distribution. This
time is

T =
m1−b

0

|a|(1− b) .

With this time we introduce τ as t/T , i.e.

τ = t|a|(1− b)m(b−1)
0 .

Hence, the dimensionless time variable takes into account
the initial geometric mean mass of the mass distribution and
the current sublimation rate. It takes not into account other
quantities like the width of the mass distribution. We define

h(τ) =
f ′n(a,m0, t)
f ′m(a,m0, t)

.

h(τ) can be interpreted as the ratio of two timescales for
change of the Ik integrals. These timescales and their ra-
tio vary in time. h(τ) is plotted in fig. 5 for various initial
geometric mean masses (from 1 to 1000 ng) and various sub-
limation rates. Obviously, all these functions are very similar
and they can be fitted with a generalized log-logistic func-
tion:

h̃(τ) =
ψ

1 +
(
p+1
p−1

) (
τ0
τ

)p .

The formulation is such that τ0 is the inflexion point of the
fit function. The latter is plotted in fig. 5 as well with ψ =
1.24, p = 2.4, τ0 = 0.3. ψ is the asymptotic value of the fit
for large values of τ . It exceeds unity which is an expression
for our earlier finding that in the end the number loss exceeds
the mass loss rate. The parameter p controls the steepness of
the fit around the inflexion point, i.e. it measures how fast
sublimation changes from the mass loss to the number loss
regime. Finally, the inflexion point is found here at 0.3 which
means that the transition into the number loss regime occurs
at a considerably shorter time than is needed to sublimate a
crystal with the median mass (which equals the geometric
mean in case of a log–normal mass distribution).

We see that it is possible to find a certain universal be-
haviour of the sublimation curves that do not depend on ini-
tial mean mass or sublimation rate. The function does how-
ever change when we use different initial mass distributions,
e.g. by changing to a different σm (not shown). The main
problem is still that the value of h depends on the time since
sublimation started. As we do not have this information in
cloud models we cannot know easily whether the process is
still on the lower branch or already on the upper branch or
close to the inflexion point.

It is clear that the time corresponding to τ0 or τ = 1 is
a characteristic time of the sublimation process. It might be

Fig. 4. f ′n vs. f ′m for various initial geometric mean masses from 1 to 1000 ng (dashed red, solid
green, blue, red). Note that the inverse values of the axis correspond to the timescales for the
change of the corresponding integrals Ik(t) in seconds.
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Fig. 5. h(τ) vs. dimensionless time τ for various initial geometric
mean masses and sublimation rates: m0 =1 ng, a = −0.04 ng/s
(red); m0 =10 ng, a = −0.09 ng/s (green); m0 =100 ng,
a = −0.2 ng/s (blue); m0 =1000 ng, a = −0.5 ng/s (violet).
The dashed black line is a generalized log–logistic function that fits
h(τ).

useful to know it for practical applications that we consider
next. For the parameters used in fig. 5 the time scales range
from 40 to 250 s, that is, time steps of cloud resolving models
are mostly smaller than the characteristic times, while those
of climate models are often larger.

5 Tests of parameterisations in two–moment models

There are two principle possibilities to parameterise sublima-
tion in two–moment models, either one defines fn as a direct
function of fm or one formulates fn independently of fm.
The second approach is a bit risky, since it does not guarantee
that fn = (0, 1) for fm = (0, 1), so that a mixed approach
that gives this guarantee would perhaps be preferable. When
fn is a direct function of fm, the power law fn = fαm is the
simplest formulation that fulfills fn = (0, 1) for fm = (0, 1).

5.1 Power laws

We can test a parameterisation by simulating complete sub-
limation (with constant a) and comparing the total mass and
number loss fractions φk with the corresponding functions
resulting from the analytical solution. A first example show-
ing a test of fn = fαm with α = 1.1 (Spichtinger and Gierens,
2009) is given in fig. 6. We see that the parameterisation pro-
duces too high number loss fractions in the early phases of
sublimation while in the final phase the mass loss fractions
are overestimated relative to the number loss. Obviously, a
choice of α < 1 would deteriorate the situation, and a much
larger value of α would only improve the agreement for the
initial phase of sublimation at the price of much worse results
in the later phases.
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Fig. 6. φn vs. φm, as parameterized in Spichtinger and Gierens
(2009) (red lines, for various choices of sublimation rates and initial
geometric mean masses), compared with the analytical solution for
various initial geometric mean masses and sublimation rates (black
line).

One could try to use a largeα in the initial phase andα < 1
later. The problem is, however, that one cannot decide in the
cloud model in which phase the sublimation process is. From
the analytical results one can see that the crystal mean mass
decreases first and then (when the curves in fig. 3 reach the
“attractor”) increases again. One would like to exploit this
fact in the cloud model, but unfortunately the mean mass de-
creases continuously in the parameterisation which is a direct
consequence of the formulation fn = fαm with α > 1. That
means, once we have α > 1 for the inital phase, we will
never get to a point when the mean mass starts to increase,
hence the criterion for switching to α < 1 will never be met.

5.2 Other functions

We tested other functional relations between fn and fm as
well, in particular such that give a zero derivative at fm = 0
(not shown). Examples are fn = 1 −√

1− fαm with α > 1
and fn = [cos((fm − 1)π) + 1]/2. This did not yield real
improvements over the simple power law. In these cases,
φn ≈ 0 until most of the ice mass is sublimated (unless α is
very close to one).

5.3 Using maximum sublimating crystal mass

Alternatively one can compute in the cloud model the max-
imum crystal mass mmax that sublimates within a timestep.

Fig. 5. h(τ) vs. dimensionless time τ for various initial geometric mean masses and sub-
limation rates: m0=1 ng, a=−0.04 ng/s (red); m0=10 ng, a=−0.09 ng/s (green); m0=100 ng,
a=−0.2 ng/s (blue); m0=1000 ng, a=−0.5 ng/s (violet). The dashed black line is a generalized
log-logistic function that fits h(τ).
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Fig. 5. h(τ) vs. dimensionless time τ for various initial geometric
mean masses and sublimation rates: m0 =1 ng, a = −0.04 ng/s
(red); m0 =10 ng, a = −0.09 ng/s (green); m0 =100 ng,
a = −0.2 ng/s (blue); m0 =1000 ng, a = −0.5 ng/s (violet).
The dashed black line is a generalized log–logistic function that fits
h(τ).

useful to know it for practical applications that we consider
next. For the parameters used in fig. 5 the time scales range
from 40 to 250 s, that is, time steps of cloud resolving models
are mostly smaller than the characteristic times, while those
of climate models are often larger.

5 Tests of parameterisations in two–moment models

There are two principle possibilities to parameterise sublima-
tion in two–moment models, either one defines fn as a direct
function of fm or one formulates fn independently of fm.
The second approach is a bit risky, since it does not guarantee
that fn = (0, 1) for fm = (0, 1), so that a mixed approach
that gives this guarantee would perhaps be preferable. When
fn is a direct function of fm, the power law fn = fαm is the
simplest formulation that fulfills fn = (0, 1) for fm = (0, 1).

5.1 Power laws

We can test a parameterisation by simulating complete sub-
limation (with constant a) and comparing the total mass and
number loss fractions φk with the corresponding functions
resulting from the analytical solution. A first example show-
ing a test of fn = fαm with α = 1.1 (Spichtinger and Gierens,
2009) is given in fig. 6. We see that the parameterisation pro-
duces too high number loss fractions in the early phases of
sublimation while in the final phase the mass loss fractions
are overestimated relative to the number loss. Obviously, a
choice of α < 1 would deteriorate the situation, and a much
larger value of α would only improve the agreement for the
initial phase of sublimation at the price of much worse results
in the later phases.
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Fig. 6. φn vs. φm, as parameterized in Spichtinger and Gierens
(2009) (red lines, for various choices of sublimation rates and initial
geometric mean masses), compared with the analytical solution for
various initial geometric mean masses and sublimation rates (black
line).

One could try to use a largeα in the initial phase andα < 1
later. The problem is, however, that one cannot decide in the
cloud model in which phase the sublimation process is. From
the analytical results one can see that the crystal mean mass
decreases first and then (when the curves in fig. 3 reach the
“attractor”) increases again. One would like to exploit this
fact in the cloud model, but unfortunately the mean mass de-
creases continuously in the parameterisation which is a direct
consequence of the formulation fn = fαm with α > 1. That
means, once we have α > 1 for the inital phase, we will
never get to a point when the mean mass starts to increase,
hence the criterion for switching to α < 1 will never be met.

5.2 Other functions

We tested other functional relations between fn and fm as
well, in particular such that give a zero derivative at fm = 0
(not shown). Examples are fn = 1 −√

1− fαm with α > 1
and fn = [cos((fm − 1)π) + 1]/2. This did not yield real
improvements over the simple power law. In these cases,
φn ≈ 0 until most of the ice mass is sublimated (unless α is
very close to one).

5.3 Using maximum sublimating crystal mass

Alternatively one can compute in the cloud model the max-
imum crystal mass mmax that sublimates within a timestep.

Fig. 6. φn vs. φm, as parameterized in Spichtinger and Gierens (2009) (red lines, for various
choices of sublimation rates and initial geometric mean masses), compared with the analytical
solution for various initial geometric mean masses and sublimation rates (black line).
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